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Abstract

The development of a new translation-function
program is reported. It is one that uses a linear
correlation coefficient to determine the correct po-
sition of an oriented molecule in the crystal cell. The
method has been implemented in a computer program
called BRUTE. The program can also refine the
orientation of the model and accept a set of atoms
with fixed positions. Comparison of the correlation
coefficient with other translation functions indicates
that it is comparable to or slightly better than the rest.
The most important feature of the program is its
ability to adjust the orientation of the model. This
allows for errors in the orientation obtained from the
rotation function to be corrected.

Introduction

The phase problem for a protein structure is most
often overcome by the method of multiple isomor-
phous replacement (MIR) (e.g. Blundell & Johnson,
1976). An alternative approach is available if the
unknown structure is related to a known one. This is
the technique of molecular replacement (Rossmann,
1972). The known structure, superimposed on the
unknown structure in the crystal cell, is used as an
approximate model to derive phase information.
Molecular replacement is thus concerned with finding
the three rotational and three translational param-
eters that specify the orientation and position, respec-
tively, of the molecule in the crystal cell with respect to
the symmetry elements.

The three rotational parameters are usually deter-
mined from the rotation function proposed by Ross-
mann & Blow (1962). It is based on the idea of
maximizing the agreement of the intramolecular vec-
tors between the observed and calculated Patterson
functions. Crowther (1972) proposed a fast algorithm
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which expands the Patterson function in terms of
spherical harmonics, allowing for the calculation to be
performed with the use of the fast Fourier transform
(FFT) (Cooley & Tukey, 1965). The rotational param-
eters are obtained independently of the position of the
model in the cell. Once the orientation is known, the
translational parameters can be determined.

There are numerous translation functions in the
literature (Tollin, 1966, Crowther & Blow, 1967, Hen-
drickson & Ward, 1976; Harada, Lifchitz, Berthou &
Jolles, 1981; Langs, 1985). The function of Crowther
& Blow (1967) is often used. It is similar to the
rotation function in that the correlation of the Patter-
son functions based on the observed and the model
structure factors is calculated with a product function.
In this case, however, the model Patterson function
consists of the intermolecular vectors of molecules
related by a symmetry operation.

T(t) = [ Piju, 1) Pou) du

where P;; is the Patterson function due to symmetry-
related molecules i and j of the model and P, is the
observed Patterson. The intermolecular vector be-
tween molecules i and j is given by t. The integral is
taken over the cell volume V. The expression is
evaluated in reciprocal space by means of a FFT
algorithm,

Another commonly used procedure is to calculate
the R factor (R= Y. ||F,| —|F.|I/Y. |F,|, where |F,| and
|F,| are the observed and calculated structure-factor
amplitudes, respectively) as the model is translated in
the cell. The computation is not as efficient as for the
translation function since FFT cannot be used to
compute the whole translation map, but with increas-
ing computer speeds this is not a serious drawback.
On the other hand, the procedure is sensitive to errors
in the relative scale of | F,) and |F.|. Such an error may
result in an incorrect solution. Nevertheless, many
structures have been solved by this method (Ross-
mann, 1980).

More recently Harada et al. (1981) have introduced
a function that combines a product function, similar
to the one defined by Crowther & Blow (1967), and an
overlap function that measures the amount by which
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the atoms of symmetry-related molecules of the model
overlap. They began with a correlation coefficient
defined as

C' =Y IFLIFLPILIFI LIS

and then derived a quantity that is more easily
computed. Their function is

T'(r) = TO(r)/O(r)
where
TO(r) =Y |F, P IF?/Y |F,[%
O(r) = |F*/n ) |Ful?,

n is the number of symmetry operations and F,, is the
contribution to the structure factor of one molecule.
TO is proportional to a product function and O is an
overlap function. The function is maximal when the
agreement between the intermolecular vectors of the
observed and calculated Patterson functions is large
and the overlap among the molecules is small. Harada
et al. (1981) have shown that the function can be
evaluated with the FFT.

The correlation coefficient

We were inspired by the work of Harada et al. (1981)
to use the correlation coefficient for the solution of the
translation problem. We chose to work with the
standard linear correlation coefficient defined as

C=Y (IF,? = FP)(IF* - |F.?)
X [Y (1F,)2 = 1F,2)* Y (IF.J* = [F5)?] 2.

Like the R factor, it is basically a measure of the
agreement between observed and calculated quan-
tities. Unlike the R factor, it is scaling insensitive, as
replacement of |F,| by k|F,| (k = arbitrary constant)
gives the same value. Scaling insensitivity is very
important when high-resolution data are not available
and an accurate scale factor cannot be obtained. The
calculation of this function is time consuming as it is
not in a form suitable for the use of FFT and the
correlation coefficient for each trial position must be
evaluated separately.

Using Parseval’s theorem (Bracewell, 1965), one can
show that C’ defined by Harada et al. (1981) is equal
to the corresponding quantity for Patterson functions,
ie.

-1/2
C'= [ P.Pdu [; P2du [ P2 du]
v |4 Vv
and, similarly, for summation over a narrow range of

resolution, C can be expressed in terms of origin-
removed Patterson functions,

-172
C=(P,Pdu l:j' Pldu | P? duil ,
v v v
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where P, and P, are origin-removed Patterson func-
tions. If the |Fyo0/? term is not included, the mean
values of the Patterson functions are zero so that both
C and C’ are correlation coefficients between Patter-
son functions. In either case, overlapping atoms will
lead to an increase in both the numerator and the
denominator of the function so that the denominator
compensates for the increase in the numerator.

Alternatively, the correlation coefficient can be
interpreted in reciprocal space as a measure of the
phase error. A group in Madras has worked out
probability distributions for a pair of related
structures (Srinivasan & Parthasarathy, 1976). They
considered the case of comparing an observed
structure with a partial model with errors. The con-
ditional probability distribution for the phase error
a=0a,—0a, given the normalized structure-factor
amplitude, is

P(x;|E,|, |E ) = K exp [(20 4| E, || E.| cos a)/(1—0%)]

where
K ={2nl,[20 4|E,||E.|/(1—0%)1} ",
gs=0.D,

with M and N the num-
bers of atoms in the
model and the observed
structure, respectively,

() (30)

D = {cos(2rh. 4r))}
Ar; = coordinate error

1,(X) = zero-order modified Bessel function (Watson,
1958).

This is a unimodal distribution with the maximum at
a«=0 and the width determined by o,. The distri-
bution becomes sharper as o, becomes larger.

Hauptman (1982), working on a related problem,
came up with an identical distribution for a pair of
normalized structure-factor amplitudes. He went on
to show that

05 = |E{? = <|E\P))E,)* —<IE5))
x [KE > = JEL1*))*>
x ((1E,1* = C|E)*))*)]~ 12
~C.

If the summation is performed over a narrow range of
resolution, then a correlation coefficient calculated for
|F| will be the same as that calculated for |E|. Under
this condition, finding the position for the molecular
model in the unit cell that maximizes the correlation
coefficient is equivalent to minimizing the phase error.
Moreover, this interpretation gives some meaning to
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the actual value obtained for C. The score for the
correctly positioned molecule is expected to be pro-
portional to the fraction of the crystal content the
model represents (¢3). In addition, C will be depen-
dent on the factor D which in turn is dependent on the
degree of homology between the model and the
unknown structure. Once a convincing solution is
found, the value of C (hence o ,) gives an indication of
the accuracy of the phases that can be obtained from
the model.

In both of the above interpretations of the correla-
tion coefficient is the condition that a narrow range of
resolution of data is used. This condition is usually
satisfied because only a restricted resolution of data is
used to minimize the computation time. However, this
suggests that if a wider resolution range of data were
used, it might be better to work with |E|’s.

The calculation of correlation coefficients has been
implemented in a program called BRUTE (for the
brute-force technique of finding a solution). It moves
the search model over a grid of points in the crystal
cell. At each point the symmetry-related positions are
generated and the structure factors are calculated. The
amplitudes of these calculated structure factors are
then compared with the observed values using the
correlation coeflicient, C, as well as the conventional R
factor. The calculation of structure factors, F,, is done
rapidly by the use of molecular scattering factors
(Lipson & Cochran, 1957).

Let

Xj=Rixp +T;

where R;, T, are the rotation matrix and the transla-
tion vector, respectively, of the symmetry operation j
of the space group, and x,, are the coordinates of the
atom k of an oriented search model in an asymmetric
unit (k varies from 1 to the number of atoms in the
model, NATM). Then for a shift A in the coordinates,

NSYM

F(h)= Y Gh)exp 2ni(h.R;A),

where NSYM is the number of symmetry operations,
NATM

Gih)= ) fiexp2mi(h.xy)

k
= molecular scattering factor
and
f, = atomic scattering factor.

The molecular scattering factors, G, are calculated
once for the first grid point and stored for use at
subsequent grid points. Therefore the overall calcu-
lation time becomes essentially independent of the
number of atoms in the model and is a function of the
number of symmetry operations, the number of reflec-
tions and the number of grid points.
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In addition to the basic computations described
above, the program incorporates some very useful
features. First, it allows for the inclusion of a set of
atoms with fixed positions. Their contributions to the
structure factors are added to the part due to the
moving set of atoms. This is useful when the orien-
tation and the position of a part of a molecule are both
known. Secondly, the program can make adjustments
in the orientation of the search model. A rotational
search can be made by rotating the model about each
axis of an orthogonal set at regular intervals. The
resulting rotations will sample the space evenly for
small changes in the angles. When combined with a
translational search a six-dimensional search is possi-
ble. However, for each new orientation, a whole set of
molecular scattering factors G; must be recalculated
so that the computation time becomes prohibitively
long if the 6D search includes more than a few
orientations near the rotation function peak. Rabin-
ovich & Shakked (1984) consider packing of the
molecule to reduce the number of trial points in a
multi-dimensional search using the R factor. We have
found that rotational parameters can be refined before
any translational searches are done, by specifying only
the P1 symmetry and adjusting the angular param-
eters for maximum correlation. Such a calculation is in
fact not very different from the rotation function.

The program has been written for the Floating
Point Systems 164 Attached Processor (FPS164)
which is driven at the University of Alberta by the host
computer, an Amdahl 5870. The FPS164 is a parallel-
pipeline machine which is capable of fast operations
on long arrays. BRUTE was written to maximize
vector usage and takes advantage of the assembler
subroutines supplied with the system for performing
the vector and matrix operations. A version of the
program written totally in standard Fortran also
exists.

The calculation time for the translational search for
pepsinogen (James & Sielecki, 1986), space group C2,
was 275 s on the FPS164 for 53 x 45 points with 1565
reflections. The same search running totally on the
Amdahl 5870 took 726s.

Results and discussion

The performance of the correlation-coefficient search
in BRUTE has been compared with those of an
R-factor search and the translation functions of Crow-
ther & Blow (1967) and Harada et al. (1981). The
structures -used in the comparison were all solved by
BRUTE. These are two serine proteases, tonin (Fujin-
aga & James, 1987) and Streptomyces griseus trypsin
(SGT) (Read, 1986, Read, Brayer, Jurasek & James,
1984), and the aspartyl protease zymogen, pepsinogen
(James & Sielecki, 1986). A summary of these
structures and the models used in the molecular
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Table 1. Structures used for the tests

Space group
and cell Search Sequence  Structural
parameters model homology* homologyt
(A,°)
Tonin P4;2,2 Trypsin 40% 0-89
(235a.a.)1 a=4864 (223a.a) (191a.a.)
b =48-64
¢ =2012
SGT C222, Trypsin 33% 0-86
(223a.a.) a=7204 (223a.a.) (168a.a.)
b =50-86
c =1204
Pepsinogen C2 Penicillopepsin ~ 35% 1-63
(370a.a.) a=1058 (323aa.) (275a.a.)
b =4340
¢ = 88:60
=914

*Percentage of identical residues.

t+R.m.s. deviations (A) of equivalent a-carbon atoms after super-
position by algorithm of Rossmann & Argos (1975) with probability
cut-off of 0-005. Number in brackets is the number of residues
considered equivalent.

ta.a. =amino acids.

replacement is given in Table 1. In each case the search
model has relatively low sequence homology with the
unknown structure. The results of the translation
searches are shown in Table 2 where the highest and
second-highest points (or lowest in the case of R
factor) are given as the number of standard deviations
above (or below) the mean. The ratio of these two
peaks is given as the signal-to-noise ratio (S/N).

EXPERIENCES WITH A NEW TRANSLATION-FUNCTION PROGRAM

It is difficult to compare the results of Crowther &
Blow’s translation function, in which three different
planes are calculated, with those of the other methods.
Each plane gives two of the three coordinates and
there is considerable information in the consistency
among the solutions obtained from all the planes.
Usually the first consistent solution ranks far above
the second. For pepsinogen, only one plane is com-
puted since the space group is polar, so comparison
for this case is straightforward. For SGT, two different
orientations are used. Orientation 1 is that obtained
from the rotation function using 2-8 A resolution data
and is 6° away from the correct orientation. Orien-
tation 2 is from the rotation function that used 3-5 A
resolution data and is 3° away from the correct
orientation. In all cases except for SGT orientation 1,
all the translation functions give the correct answer.
The small number of trials presented here does not
allow one to say conclusively that one translation
function performs better than the rest. However, it
would seem that the R-factor search performs most
poorly.

For SGT orientation 1, all the functions tested give
an incorrect solution but the low signal-to-noise ratio
in each of the cases makes the solution untrustworthy.
The result for this case can be looked at from two
different points of view. The first is that current
translation functions do not always work, or that they
should be more robust in the presence of model
orientation errors. The second point of view is that the

Table 2. Comparison of various translation functions

Data between 4 and 8 A resolution were used for all the runs. The peak heights are expressed as the number of standard deviations above (or
below for R factor) the mean. The signal-to-noise ratio (S/N) is calculated as the ratio of the highest (lowest) and the second-highest(lowest)

peaks.
BRUTE
(correlation
Crowther & Blow (1967) R factor Harada et al. (1981) coefficient)

Tonin

Ist 46 51 40 36 63 104

2nd 38 34 35 2-1 38 60

S/N 12 15 1-1 1-7 1-7 1-7
Pepsinogen

Ist 52 38 53 72

2nd 39 2:4 25 35

S/N 1-3 16 21 21
SGT

Orientation 1t

1st 3-8* 31> 1-5* 1-5* 2:9* 4-3*

2nd 37 31 1-5 1-5 25 40

S/N 1-0 10 1-0 1-0 12 1-1

Orientation 2}

1st 4-2* 3S 46 1-7 36 57

2nd 3-8 33 36 1-6 32 4-5

S/N 1-1 1-1 1-3 1-1 12 13

*Incorrect solution
+From rotation function using 2-8 A resolution data (6° error).
1 From rotation function using 3-5 A resolution data (3° error).
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rotation function does not always work, or that it can
be too imprecise and inaccurate to allow the transla-
tion function to work. This is contrary to the popular
belief (e.g. Harada et al, 1981) that the rotation
function is reliable whereas the translation functions
are not.

A further conclusion can be drawn from the SGT
example. It is possible to distinguish the correct
orientation using the results of the translation func-
tions. In a set of translation searches using models
with different orientations, the best orientation is the
one that gives the most unambiguous solution (i.e.
highest S/N). The value of the correlation coefficient is
also generally a good indication of a correct orien-
tation. For orientation 2 of SGT the highest correla-
tion was 022, whereas for orientation 1 it was only
0-13. However, it has been observed in one test case
(unpublished results) that the orientation that resulted
in the highest correlation coefficient gave an incorrect
solution. In this case, the translation map with the
highest S/N did give the correct solution but with a
slightly lower value of the correlation.

The main advantage of BRUTE over the other
programs is its ability to adjust the orientation. This
allows structures to be solved even in the presence of
error in the results of the rotation function. In ad-
dition, the ability of the program to accept contri-
butions from partial structures whose positions are
fixed is useful for cases where there are more than one
subunit or domain (Cygler, Boodhoo, Lee & Ander-
son, 1987). The insensitivity to the scale of the data
allows structure solution even when high-resolution
data are not available and an accurate scale cannot be
determined. Finally, because the correlation coefh-
cient gives an absolute measure of the phase error, its
value can be used to assess not only the correctness of
the solution but also the quality of the model in
providing phase information.
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