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Abstract

The application of a maximum-likelihood analysis to the
problem of structure re®nement has led to striking
improvements over the traditional least-squares
methods. Since the method of maximum likelihood
allows for a rational incorporation of other sources of
information, we have derived a likelihood function that
incorporates experimentally determined phase informa-
tion. In a number of different test cases, this target
function performs better than either a least-squares
target or a maximum-likelihood function lacking prior
phases. Furthermore, this target gives signi®cantly better
results compared with other functions incorporating
phase information. When combined with a procedure to
mask `unexplained' density, the phased likelihood target
also makes it possible to re®ne very incomplete models.

1. Introduction

Notation used is given in Table 1. The advent of a
maximum-likelihood approach to crystallographic
structure re®nement has yielded substantial improve-
ments. Test re®nements using maximum-likelihood
target functions in the programs BUSTER (Bricogne &
Irwin, 1996), REFMAC (Murshudov et al., 1997) avail-
able from the Collaborative Computational Project,
Number 4 (1994), CNS, TNT and X-PLOR (Pannu &
Read, 1996) show clearer electron-density maps and
reduction of phase error over those carried out against a
least-squares target function. Recent tests have shown
that the combination of a maximum-likelihood target
function and simulated-annealing optimization para-
meterized in torsion-angle space (Rice & BruÈ nger, 1994)
further enhances re®nement (Adams et al., 1997). Using
re®nement with the Rice distribution as a target func-
tion and updating atoms, for example using ARP
(Lamzin & Wilson, 1993), also improves phases (Z.
Dauter, personal communication).

For many structure solutions some experimental
phase information is available before re®nement. Using
this information should, in principle, increase the power
of re®nement, since the ratio of observations to para-
meters is greater. There have been previous attempts to
exploit this information in re®nement. For example,
Lunin & Urzhumtsev (1985) suggested adding log�P��c��
to the re®ned residual, where P��� is a prior phase
probability distribution and �c is the phase of the
structure factor calculated from the model.

Arnold & Rossmann (1988) suggested minimizing

P
wjFo ÿ Fcj2 �1�;

where Fo and Fc are vectors and w is the ®gure of merit
of the phases. Another approach would be to carry out
the re®nement in real space as suggested by Diamond
(1971). In this approach, cycles of re®nement and phase
recombination with the new model enhance the quality
of the target map.

However, in all the above cases the addition of the
phase information requires new assumptions or techni-
ques. The maximum-likelihood formulation can impli-
citly incorporate prior phase information (Bricogne &
Irwin, 1996; Murshudov et al., 1996, 1997).
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(For centrosymmetric re¯ections integration is replaced
by summation over the two possible phases.)

Different assumptions about the prior phase prob-
ability P��� generate different forms of P�Fo;Fc�.
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Assuming that phases are exactly known, then P��� is
Dirac's delta function, and P�Fo;Fc� becomes

P�Fo;Fc� �
Fo
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acentric,

1
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2"�2
�

� �
centric.

8>>><
>>>:

�3�
There is an obvious similarity between (3) and (1).
Extremely accurate phases can be derived from rich
non-crystallographic symmetry (NCS) and in such a case
the use of (1) could be appropriate.

The other extreme case is when no prior phase
information is available [i.e. P��� is constant]. In this
case P�Fo;Fc� becomes the Rice distribution which, as
previously mentioned, has already been shown to be a
powerful tool for re®nement.

In many cases it is convenient to express the available
phase probability in terms of Hendrickson±Lattman
coef®cients (Hendrickson & Lattman, 1970) and this
paper discusses a likelihood function (MLHL) using
these, or the symmetric unimodal phase probability
distribution based on knowledge of phase and ®gure of
merit alone. Even at the end stages of re®nement, it can
be shown that using this probability distribution for
phases can improve re®nement behaviour.

Bricogne & Gilmore (1990) and Murshudov et al.
(1997) have suggested using the experimental uncer-
tainties of the structure-factor amplitudes to increment
"�2

�. This contribution is not included in the above
equations, but is included in the REFMAC imple-
mentation of MLHL. Alternatively, it can be incorpo-
rated by assuming that the experimental errors in the
structure-factor amplitudes are distributed as Gaussian
as outlined in Appendix A.

Results of test re®nements to demonstrate the power
of the MLHL target function are described in x5.

2. MLHL: a likelihood function incorporating prior
phase information

Under the assumption that individual re¯ections are
independent, the principle of maximum likelihood states
that the best parameters for a model are obtained by
maximizing the following likelihood function (L),

L � Q
hkl

P�Fo;Fc� �4�

or, equivalently, minimizing the minus log likelihood
[L � ÿ log�L�]. In the above expression P�Fo;Fc�
denotes the probability distribution of the observed
structure-factor amplitude given the calculated struc-
ture-factor amplitude.

Hendrickson & Lattman (1970) have shown that the
prior probability distribution of a phase (�) can be
represented in the following form:

P��� � N exp�Ahl cos��� � Bhl sin���
� Chl cos�2�� � Dhl sin�2���; �5�

where Ahl;Bhl;Chl and Dhl are Hendrickson±Lattman
coef®cients and N is a normalization constant. This form
can generate a bimodal probability distribution. If Chl

and Dhl are zero the probability distribution is unimodal.
In the acentric case, multiplication of the density

Pa�F;��;Fc� with the prior probability distribution
P��� gives the joint probability distribution
Pa�F;��; �;Fc�. Integrating the true phase out of this
joint probability distribution gives the required distri-
bution.
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�6�
where A0

hl � Ahl � X cos��c�, B0
hl � Bhl � X sin��c), and

X � 2FoDFc="�
2
� for the acentric case or FoDFc="�

2
�

for the centric case. A sample surface plot of (6) for the
acentric case is shown in Fig. 1, using parameters taken
from a re¯ection in a test case. This ®gure demonstrates
that the power of phased likelihood comes from the
model reinforcing a phase choice consistent with the
experimental phase-probability distribution.

Taking the minus logarithm of (6), removing all terms
that are constant, and summing over all re¯ections gives
the desired target function.

L � P
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l�0

exp�A0
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� B0
hl sin��l��

�
:

�7�
Hendrickson & Lattman (1970) derived a series repre-
sentation for the integral in the acentric case (6).
Unfortunately this series exhibits numerical instabilities
for particular arguments, so the above integral is eval-
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uated numerically in the general case of non-zero
Ahl;Bhl;Chl and Dhl Hendrickson±Lattman coef®cients.
However, in the special case when Chl and Dhl are both
zero (always true for centric re¯ections), an analytical
form exists,

L � P
hkl acentric

F2 � D2F2
c

"�2
�

ÿ log I0��A0
hl�2 � �B0

hl�2�1=2
� 	

� P
hkl centric

F2 � D2F2
c

2"�2
�

ÿ log cosh��A0
hl�2 � �B0

hl�2�1=2
� 	

:

�8�

From this equation, it is easy to calculate the cosine, the
sine and the ®gure of merit (FOM) of the combined
phases,

FOM �
I1��A0

hl�2 � �B0
hl�2�1=2

I0��A0
hl�2 � �B0

hl�2�1=2
acentric

tanh��A0
hl�2 � �B0

hl�2�1=2 centric

8<
: �9�

and

cos��comb� � ��A0
hl�2 � �B0

hl�2�ÿ1=2

� �Xexp cos��exp� � X cos��c�� �10�
sin��comb� � ��A0

hl�2 � �B0
hl�2�ÿ1=2

� �Xexp sin��exp� � X sin��c�� �11�

where Xexp � �A2
hl � B2

hl�1=2 is a measure of the prior
phase probability, �exp is the centroid of the prior phase
probability distribution, X is a measure of the quality of
the model, �c is the calculated phase and �comb is the
combined phase. If Xexp is too large, i.e. if it under-
estimates the experimental phase error, the re®nement
will try to reach an unrealistic target and will be rather
unstable. This highlights the importance of the reliability
of the prior phase probability distribution and the need
to obtain less biased Xexp values. At the beginning of
re®nement when X < Xexp, using prior phase informa-
tion will in¯uence the model more than at the end stages
when X > Xexp, where the calculated phases will
dominate. But since Xexp and �exp always contain inde-
pendent information about the crystal it seems appro-
priate to use these prior phases at all stages, possibly
with some adjustment of the weighting to correct for
bias, and possibly after improvement with some other
procedures such as density modi®cation.

3. Blurring of the phase-probability distribution

In many cases the phase-probability distribution does
not re¯ect the true distribution of phases. This may arise
from a correlation between heavy-atom sites (Terwil-
liger & Berendzen, 1997) or from density-modi®cation
procedures. At present the best treatment for obtaining
a reliable phase probability distribution is that devel-
oped by Fortelle & Bricogne (1997) and incorporated
into the program SHARP.

The phase-probability distributions for phases
obtained after density modi®cation have been derived
assuming that the phases come from partial atomic
models, not from electron density. Even more vexingly,
much of the power of density-modi®cation procedures
relies on combining the new density-modi®cation phases
with the original experimental phases. These sources of
phase information are not independent because the
modi®ed map will retain many of the features of the
original map. Two approaches to overcoming this
problem of the lack of independence of the phases have
been devised (Cowtan & Main, 1996; Abrahams, 1997).
While these approaches improve the situation substan-
tially, further study will be required to determine the
accuracy of the phase-error estimates.

To compensate for the overestimation of experi-
mental phase accuracy, REFMAC provides an option to
`blur' the phase-probability distributions,

Table 1. Notation

Fo Experimental amplitude of the struc-
ture factor

�F � �F;exp Experimental uncertainty in amplitude
of the observed structure factor

Fc � Fc exp�i�c� Calculated structure factor
�exp Centroid phase from prior experi-

mental phase probability distribution
Ahl;Bhl;Chl;Dhl Hendrickson±Lattman coef®cients for

phase-probability distribution
s Vector of position in reciprocal space;

s � jsj � 2 sin �=�
�x Error in position of atoms

D hcos��xs�i
�2
�

P
N ÿD2

P
PP

N �P
f 2

j Sum of form factors squared for all
atoms in crystal (Wilson, 1949)P

P �P
f 2

j Sum of form factors squared for all
atoms in model

" Expected intensity factor of diffracting
plane

mcomb Figure of merit of combined phase
�comb Combined phase
X � 2FoDFc="�

2
� or

FoDFc="�
2
�

For acentric and centric re¯ections,
respectively

I0�x�; I1�x� Zero- and ®rst-order modi®ed Bessel
functions of the ®rst kind

P�A; . . . ;B; . . .� Conditional probability distribution of
�A; . . .� when �B; . . .� are known

P�A� � R
B

P�A;B�dB marginal probability distribution of A

For experimental observations �A; . . .� and parameters �B; . . .� to be
estimated using these, the minus log likelihood function, L, will be
L � ÿ log P�A; . . . ;B; . . .�. The maximum-likelihood estimation of
parameters �B; . . .� is achieved by minimization of this function.
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Anew � S exp�ÿBjsj2�Aold;

Bnew � S exp�ÿBjsj2�Bold;

Cnew � S exp�ÿBjsj2�Cold;

Dnew � S exp�ÿBjsj2�Dold;

where Aold, Bold, Cold, Dold are the current Hendrickson±
Lattman coef®cients, Anew, Bnew, Cnew and Dnew are the
modi®ed coef®cients, and S and B are scale and B values
for blurring. By modifying the blurring factors for a
particular set of experimental phases, it is possible to
optimize the model improvement, which can be moni-
tored through Rfree. This type of modi®cation of the
phase-probability distribution is only a stop-gap solu-
tion; it would be more proper to remove the bias as the
phase-probability distributions are derived. At that
point the data underlying the distributions are available,
whereas the re®nement programs usually have no access

to this information, and hence can hardly perform
satisfactory bias removal.

4. Re®nement of partial structures

Often only part of a structure can be built into the ®rst
experimentally phased map. To re®ne this partial
structure Murshudov et al. (1997) proposed assuming
that there are two components of the structure: one
comprising the modelled atoms, and the other
comprising the unexplained part of the electron density,
which can be transformed to give a component of the
total Fc vector. Practical experience has shown that it is
better to modify this unexplained part of the electron
density. The simplest useful modi®cation is:

�new � �old if �old > � r:m:s:
0 otherwise

n
;

Fig. 1. Plots of probability distributions for TnC test case re¯ection 116.
(a) Phase-probability curve indicating the two most probable phase
choices. (b) Surface plot of P�Fo;Fc� lacking prior phase informa-
tion as a function of the real and imaginary components of Fc. This
distribution is radially symmetric, thus the extremum chosen will
tend to be in the direction of the model phase. (c) Surface plot of
P�Fo;Fc� incorporating prior phase information reinforces both
phase choices seen in the SIR experiment as peaks in the function.
These ®gures were drawn using the program Mathematica
(Wolfram, 1991).
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where �old is the electron density calculated using the
available phases, r:m:s: is the root-mean-squared
deviation from the mean for �old and � is a constant. To
avoid bias towards prior phase information, it is neces-
sary to exclude the cross-validation re¯ections while
calculating �old. The following procedure for the
re®nement of partial structures can be used:

(i) build part of the structure;
(ii) screen out the interpreted density, and modify the

remaining part as described above or by some other
method such as skeletonization (Greer, 1974) or pseudo-
atom addition (Isaacs & Agarwal, 1978; Perrakis et al.,
1997);

(iii) calculate structure factors from this modi®ed
electron density;

(iv) use these structure factors as a partial structure
contribution;

(v) after a few cycles of re®nement go to step (ii);
(vi) if the map is good enough go to step (i).

To re®ne the partial structure, Fc is equated to
D1Fc1 � D2Fc2 and �2

� is replaced byP
N ÿD2

1

P
p1 ÿD2

2

P
p2 to take into account the

separation of the two different parts of structure and
their different expected errors. For more details, see
Murshudov et al. (1997). Alternatively, an overall
difference in the errors of Fc1 and Fc2 can be accounted
for by re®ning overall B factors for the two contribu-
tions. A difference in an overall B factor corresponds to
a difference in an overall Gaussian coordinate error for
each partial model (Read, 1990). If this approach is
taken, D and �2

� can be estimated from the combined Fc

in the conventional manner.
As long as the modi®ed unexplained density bears

some resemblance to the missing structure, it will be
better to include its contribution than to leave it out.
The inclusion of a contribution from this density in the
total Fc vector leads to a smaller variance in the prob-
ability distribution of the true structure factor given the
calculated structure factor and thus further increases the
power of the re®nement target.

5. Test re®nements

The maximum-likelihood target MLHL has been
implemented in the programs REFMAC (Murshudov et
al., 1996), CNS (BruÈ nger et al., 1998), TNT (Tronrud et
al., 1987) and X-PLOR (BruÈ nger et al., 1987). Results

from tests in REFMAC and CNS will be discussed here.
The ®rst test example shows the superiority of phased
likelihood re®nement over other types. In the second
and third examples the effect of `bad' and `good' phases
are analysed for two types of problems often arising in a
macromolecular structure solution.

5.1. Troponin-C

In this test, a `scrambled' (Rice & BruÈ nger, 1994)
starting model was re®ned using only poor SIR phases to
supplement the likelihood function. The test protein was
troponin-C (TnC), which was originally solved at 2.8 AÊ

resolution using multiple isomorphous replacement
(MIR) phasing from 11 derivatives (Herzberg & James,
1985). Of these 11, a single derivative (TmCl3) was
chosen. The heavy-atom parameters for this derivative
were further re®ned by MLPHARE (Otwinowski,
1991), which subsequently generated the Hendrickson±
Lattman coef®cients used by MLHL, and the `best'
phase and ®gure of merit used by the vector and mixed
(Fujinaga, 1993) residuals. These phases were relatively
poor; MLPHARE reported a mean ®gure of merit of

Table 2. Re®nement statistics for the TnC test case

Start Least squares MLF MLI Vector Mixed MLHL
R factor 0.557 0.380 0.362 0.348 0.464 0.374 0.340
Rfree 0.544 0.518 0.440 0.434 0.493 0.456 0.404
Mean phase error (�) 73.7 67.6 50.4 48.6 57.8 46.8 38.5
Mean cos (phase error) 0.21 0.29 0.51 0.53 0.42 0.56 0.66
Mean map correlation 0.369 0.477 0.709 0.731 0.579 0.739 0.818

Fig. 2. Map correlations after the TnC test re®nements. Stars
correspond to the starting model, triangles to the least-squares
model, circles to the MLI model, squares to the mixed residual
model and diamonds to the MLHL model. Statistics for this graph,
as well as all of the re¯ection ®les used in the TnC re®nement, were
generated by the program SFTOOLS (B. Hazes, unpublished work).
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0.39, while the mean cosine of the phase difference from
phases calculated from the ®nal published structure was
0.29.

A starting model was generated by `scrambling', i.e.
performing a molecular dynamics run using a target
function without reference to X-ray information. The
starting model generated in this way had a root-mean-
squared deviation for all atoms of 2.28 AÊ from the
published structure. Of the 3868 observed native
re¯ections at 2.8 AÊ resolution, 496 were ¯agged as cross-
validation data for �A estimation (Read, 1997) and Rfree

calculation (BruÈ nger, 1992). The test re®nement
involved 600 cycles of conjugate-gradient re®nement in
CNS using MLHL, the mixed residual, the vector resi-
dual, MLI, MLF and least-squares.

Results from this test are shown in Table 2 and Fig. 2.
The results compare re®nements using different target
functions against the published ®nal structure of TnC
re®ned at 2.0 AÊ (Herzberg & James, 1988). This ®nal
structure has an R factor of 0.155 within the 10±2.0 AÊ

resolution range for intensities I � 2�(I). As indicated
by the map correlation with this ®nal model, MLHL
clearly performed better than any other target function.
Additionally, MLHL gave the lowest Rfree value. Figs. 3
and 4 show regions of TnC in which MLHL accom-
plished a major shift towards the ®nal model unmatched
by any other target function.

5.2. Cytochrome c0 ± starting re®nement from a very poor
molecular-replacement model.

The structure of cytochrome c0 was solved by Baker et
al. (1995) through a process of intensive model building
and re®nement. The starting model was based on a
molecular-replacement (MR) solution where the model
used had only �25% homology to cytochrome c0. The
structure was re®ned using TNT to an R factor of 16.7%
computed on data from 20.0±2.15 AÊ resolution. In the
®nal structure, 96.3% of the residues are within the
most-favoured region of the Ramachandran plot as
de®ned by PROCHECK (Laskowski et al., 1993).

Very poor MIR phases extending to 3 AÊ resolution
were available. Density modi®cation by the program
DM was used to re®ne and extend this set. Tests were
performed using both the MIR phases and those
generated by DM. Although the mean phase difference
between the initial MR phases and those calculated
from the ®nal model was 89�, i.e. close to random,
Fig. 5(a) shows that for the few low-resolution re¯ec-
tions it was about 65�.

Re®nement of the initial MR model without phases,
using the maximum-likelihood residual and the sparse-
matrix method of minimization within REFMAC, failed
and improved neither the model nor the phases. When
the poor MIR phases were included, the re®nement
procedure yielded better combined phases, and when
DM phases extended to 2 AÊ were used results improved

even more. The mean FOM for the MIR phases to 3 AÊ

was 0.36 and for the DM phases extending to 2 AÊ it was
0.45. After several trials, a blurring factor with a scale of
0.7, and a `temperature factor' of 30 AÊ 2 was chosen for
application to the phase probabilities from DM. The
geometry was quite loosely restrained, with a weighting
ratio of 1.0 between the X-ray and geometric restraint
contributions to the residual. 200 cycles were run, with
atomic shifts `damped' by a factor of 0.1. This severe
damping factor slowed down the rate of convergence,
but avoided the generation of large meaningless shifts.
The results of the phased re®nement for this extreme
case are summarized in Table 3. The behaviour of the
phase difference over the resolution range (Fig. 5) shows
that the use of the MIR phases improved the low-
resolution phases substantially, much more than the
high-resolution phases. Using DM, phases with the
blurring factor gave improvement across the whole

Fig. 3. Rigid-body shift in the TnC test case. In this region of TnC, only
the MLHL function (blue) was able to make a full shift from the
starting model (white) to the ®nal model (yellow). The result of the
re®nement of the mixed residual is shown in (red).

Table 3. Cytochrome c0 ± very poor MR model

Data 70% complete

h��i² Resolution
MIR³ 70.1 3.0
Initial§ 89.7 2.0
Model 1} 80.4 2.0
Combined 1²² 73.3 2.0
DM³³ 73.3 2.0
Model 2§§ 70.5 2.0
Combined 2}} 68.3 2.0

² Average absolute phase difference between phases calculated from
the deposited model. ³ MIR experimental phases extending to
3 AÊ . § Phases calculated from initial coordinates. } Phases calcu-
lated from coordinates re®ned using these MIR experimental
phases. ²² Phases obtained by combining the model phases and
the MIR experimental phases. ³³ DM experimental phases re®ned
and extended to 2 AÊ §§ Phases calculated from coordinates re®ned
using these DM experimental phases. }} Phases obtained by
combining the model phases and the MIR experimental phases.
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Fig. 4. (a) In this region of TnC, none of the re®nements were able to fully converge from the starting model (shown in white) to the published
structure (shown in yellow). The result of the re®nement using the mixed residual and MLHL are shown in red and blue, respectively. (b)
Combined-phase SIGMAA map (Read, 1997) of the starting model and the SIR phases used in re®nement. (c) Combined-phase SIGMAA map
of the mixed residual model and the SIR phases used in re®nement. (d) Combined-phase SIGMAA map of the MLHL model and the SIR
phases used in re®nement. This ®gure and Fig. 3 were drawn using the program O (Jones et al., 1991).
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range. The combined phases are better in each range
than either the experimental or calculated phases.

5.3. Oestrogen receptor ± re®nement of partial structure
and effect of `bad' and `good' phases

This structure has been solved by a combination of
MIR, multi-crystal NCS averaging and phased re®ne-
ment (Brzozowski et al., 1997). The R factor for the
deposited coordinates (Protein Data Bank, deposition
code 1ERR) is 21.8% and the Rfree is 29.8%. 94.2% of
the residues are within the most favoured region of the
Ramachandran plot as de®ned by PROCHECK. In this
case, the geometry was more tightly restrained, with a
weighting ratio of 0.2 between X-ray and geometry
restraint contributions to the residual. Shifts were
`damped' by a factor of 0.5.

Two highly correlated derivatives were available and
MLPHARE gave unrealistically high ®gures of merit
(mean FOM = 0.49 to 3 AÊ ). There were two copies of the
molecule in the unit cell and two other crystal forms
were available. DM was used to carry out twofold
averaging within the unit cell and DMMULTI was used
for multi-crystal averaging. After DM the mean FOM
was 0.45, and after DMMULTI it was 0.58. After several
trials, a blurring factor with a scale of 0.7 and a
`temperature factor' of 20 AÊ 2 were applied to both the
MIR and DM phase probabilities.

The re®nement gave improvement for 20 cycles using
the DM phases, but improvement continued for 100
cycles using the better DMMULTI phase set.

To analyse the effect of `bad' and `good' phases for
this paper, an intermediate stage of re®nement was
chosen as a starting point. This intermediate structure
had been built using only single-crystal averaging
performed with an inadequate mask. Only 45% of the
atoms were built and there was considerable error in
their positions. The re®nement was carried out using the
procedure described in x4. The unmodelled part of the
electron density was modi®ed with � set to 1.8, and used
to calculate a partial structure factor for the unexplained
part of the asymmetric unit. This partially built structure
was subjected to phased re®nement using both the
original MIR phases and those obtained after multi-
crystal averaging. In both cases blurring factors were
used. The results are summarized in Table 4. This shows
that the re®nement using the more reliable multi-crystal
averaged phases gives much better results, although
there is still improvement after using MIR phases.

6. Conclusions

The application of the MLHL target function to these
test cases has yielded promising results. MLHL
performed signi®cantly better than any other target
function resulting in clearer electron density and
improved phase quality. Furthermore, the difference

between the working and free R factors is smaller with
the MLHL target, because the inclusion of prior phase
information provides more observations for the re®ne-
ment.

There still remain problems in using prior phase
information, one of them being the bias in the available

Fig. 5. Plots of absolute mean phase differences for cytochrome c0. All
values are given relative to phases calculated from the deposited
model. Diamonds correspond to differences from phases calculated
from the initial model coordinates, circles to differences from the
initial experimental phases, squares to differences from phases
calculated from coordinates re®ned using these experimental phases
and stars to differences from the combined phases. (a) Using MIR
experimental phases to 3 AÊ . (b) Using DM-modi®ed experimental
phases. The density modi®cation both re®nes the initial set and
extends the set to cover the full resolution range. A blurring factor
was applied to the prior phase probabilities.
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prior phase probability distributions. Using the
suggested `blurring' factors has been shown to improve
the performance of MLHL. Future work will include
automatic optimization of these blurring factors. Often
atomic coordinates are derived from available experi-
mental phases so there will be correlation between the
phase error from the current model and that for the
`prior' phases. Taking this into account could improve
the behaviour of re®nemement.

Another general problem addressed is the re®nement
of a partial model. Adding a contribution to the calcu-
lated structure factor from the modi®ed electron density
for the unmodelled part of the crystal has been shown to
help. For a better solution to this problem, the prob-
ability distribution used should be modi®ed to include
off-diagonal terms of the multivariate distribution of
structure factors in re®nement. However, this may
require huge computer resources.

The landscape of the MLHL target function with
geometric restraints still contains local minima,
suggesting that further improvements can be accom-
plished with a global optimization scheme such as
simulated annealing parameterized in torsion-angle
space (Rice & BruÈ nger, 1994). Preliminary tests indicate
that the MLHL function in combination with torsion-
angle molecular dynamics yields promising results (P.
Adams and A. BruÈ nger, personal communication).

In our implementations of MLHL, the prior phase
information was assumed to be one dimensional and
corresponded to the logarithm of the ®rst two terms of
the Fourier series of the actual phase distribution. A
more rigorous derivation of the required distribution
would take into account the various sources of errors
associated with an MIR or MAD experiment, as used in
the heavy-atom re®nement program SHARP (Fortelle
& Bricogne, 1997), and combine this information with
the errors associated with the current model. This
treatment would undoubtedly give a better theoretical

account of the sources of errors, and would be suitable
for the joint re®nement of the structure and the heavy-
atom derivatives. However, such a likelihood function
would require a large computational cost. The deriva-
tion outlined above provides a fast approximation to this
more rigorous treatment.

APPENDIX A
Derivation of a prior phased likelihood function

including measurement errors

In order to derive a likelihood function incorporating
prior phase information that includes the effect of
measurement error of the native structure-factor
amplitude, the joint probability distribution,
P�F;��; �;Fc�, must be multiplied by a probability
distribution of the observed structure-factor amplitude
given the true structure-factor amplitude, P�Fo;F�. The
resulting expression is the joint probability distribution
P�Fo;F;��; �;Fc�. The required distribution is
obtained by integrating out the true structure-factor
amplitude and phase,

P�Fo;Fc� �
R2�
0

R1
0

P�F;��; �;Fc�P�Fo;F�dFd�:

In this derivation, a Gaussian probability distribution of
the observed structure-factor amplitude given the true
structure-factor amplitude will be assumed. As well,
only acentric re¯ections will be considered here, but
similar equations can be derived for the centric case. The
required integral for the acentric case is

P�Fo;Fc� �
1

�2�3�1=2�F"�
2
�

� R2�
0

P���R1
0

F exp

�
ÿ F2

�
1

2�2
F

� 1

"�2
�

�

� F

�
Fo

�2
F

� 2DFc cos����
"�2

�

��
dFd�:

The true structure-factor amplitude can be integrated
out of this expression (Gradshteyn & Ryzhik, 1980),
leaving only a numerical integration of the true phase,

P�Fo;Fc� �
�F

�2�3�1=2��2
F � "�2

��
� exp ÿ F2

o

2�2
F

ÿ D2F2
c

"�2
�

� �

� R2�
0

P��� 1 � ����1=2 exp��2�erfc�ÿ��� 	
d�;

where

� � Fo"�
2 � 2DFc cos��ÿ �c��2

F

�F

�
"�2

� � 2�2
F

2"�2
�

�1=2

:

Table 4. Oestrogen-receptor (45% complete) model

h��i² Resolution
MIR³ 72.3 3.0
Initial§ 68.9 2.6
Model 1} 61.2 2.6
Combined 1 ²² 61.4 2.6
DM averaged³³ 45.8 2.6
Model 2§§ 50.5 2.6
Combined 2}} 38.4 2.6

² Average absolute phase difference between phases calculated from
the deposited model. ³ MIR experimental phases extending to
3 AÊ . § Phases calculated from initial partly built model. } Phases
calculated from coordinates re®ned using these MIR experimental
phases. ²² Phases obtained by combining the model phases and the
MIR experimental phases. ³³ DM experimental phases after
averaging between two crystals, and twofold single-crystal avera-
ging. §§ Phases calculated from coordinates re®ned using these DM
experimental phases. }} Phases obtained by combining the model
phases and the MIR experimental phases.
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