
Data Collection 
 
Diffraction Geometry – The Reciprocal Lattice 
 
   An ideal crystal is composed of molecules arranged on 
a regular three dimensional lattice. The unit cell 
describes the basic building block for this lattice, and is 
characterised by the lengths of its three edges (a,b,c) and 
the angles between them (α,β,γ).  
 
   Definition: A lattice is an infinite arrangement of 
points in space where the environment of any point is 
identical to the environment of all other points. 
 
  This lattice (the real space lattice) is easily visualised in 
terms of the physical arrangement of molecules in the 
crystal. Indeed, it can often be seen directly by electron 
microscopy of a suitably thin crystal. 
 
   The reciprocal lattice is defined in the same way by the 
reciprocal unit cell, with axes a*, b*, c* (and interaxial 
angles α*,β*,γ*) by the following vector relationships: 
 
a*   =   b^c  b*  =  c^a   c*  =  a^b 
           a.b^c     a.b^c           a.b^c 
 
Where “^ “ denotes a vector cross product and “.” 
denotes a vector dot product. 
 
 
Thus a* is normal to the axes b and c, and has a 
magnitude inversely proportional to the magnitude of a. 
 



 
 
In an orthogonal system  (α=β=γ=90o) this simplifies to 
  
 a*   = 1 i   b*  =  1 j        c*  = 1 k 
          a                  b          c 
 
where i, j k are unit vectors along the a, b, c axes. 
 
The co-ordinates of the reciprocal lattice points are hkl 
where h,k and l are integers. Thus h is the number of 
reciprocal lattice points along the a* direction, k along b* 
and l along c*. 
 
The reciprocal lattice has no obvious physical 
significance, but is extremely valuable in visualising 
diffraction geometry when used in conjunction with the 
Ewald sphere construction.  



The Ewald Sphere Construction 
 
The Ewald sphere is centred on a line representing the X-
ray beam direction, with a radius of 1/λ. The crystal 
position is at the centre of the Ewald sphere. The 
reciprocal lattice has its origin at the point where the X-
ray beam exits the Ewald sphere. Rotation of the crystal 
(sitting at the centre of the sphere) results in an identical 
rotation of the reciprocal lattice about its origin. 
 
Diffraction from a set of planes with Miller indices hkl  
will occur when the corresponding reciprocal lattice 
point (hkl) lies exactly on the Ewald sphere. 
 
(The way that the reciprocal lattice is defined means that 
the vector from the origin to the reciprocal lattice point 
hkl  (d*) will be normal to the planes with Miller indices 
hkl and will have a magnitude 1/d, where d is the 
interplanar spacing. This is left as an exercise for the 
student.) 
 



Effects of crystal mosaicity, wavelength dispersion 
and beam divergence. 
 
  In practice, because a real crystal is made up of many 
small mosaic blocks with a small spread in orientations, a 
reciprocal lattice point for the crystal will not be a true 
point, but a small spherical cap. In the extreme case of a 
powder, each reciprocal lattice point becomes a spherical 
shell. 
 
  Equally, because of wavelength dispersion, the Ewald 
sphere has a finite thickness. Beam divergence will also 
increase the effective thickness of the Ewald sphere. 
 
   As a consequence, particularly for macromolecular 
crystals which have relatively large unit cells (and thus 
closely spaced reciprocal lattice points), a number of 
planes will be in a diffracting position even for a 
stationary crystal. 
 
  However, in order to bring all planes into a diffracting 
condition (in a monochromatic experiment) the crystal 
must be rotated. As the crystal rotates, the reciprocal 
lattice also rotates about its own origin, and a succession 
of reciprocal lattice points will pass through the Ewald 
sphere. 
 



The Ewald sphere construction explains the 
appearance of diffraction patterns. 
 
  If the X-ray beam is along a principal zone axis 
direction, it will be normal to a set of densely populated 
reciprocal lattice planes. These planes will intersect the 
Ewald sphere in a set of concentric circles, centred on the 
direct beam position.  
 
  Thus all reciprocal lattice points in a diffracting 
condition will also lie on this set of concentric circles. 
The distance between the circles is a function of the 
spacing of the reciprocal lattice planes along the X-ray 
beam direction. 
 
  If the crystal is rotated through a small angle, each of 
these circles will be drawn out into a lune. Within the 
lune, the spot separation will be determined by the 
reciprocal lattice spacings within the planes. 
 
   A very mosaic crystal (or a large beam divergence) has 
an effect on the diffraction pattern that is very similar to 
rotation of the crystal. Instead of circles of spots on a 
“still” image (no crystal rotation), lunes of spots will be 
seen. 
 
   If a principal zone axis is precessed about the X-ray 
beam direction, with the detector following the same 
precessive motion, then an undistorted projection of the 
reciprocal lattice can be recorded (a precession 
photograph) from which the lattice parameters can be 
measured directly. 
 



 
Symmetry of the reciprocal lattice 
 
  The symmetry of the reciprocal lattice follows the 
symmetry of the real space lattice. This symmetry 
extends beyond the geometric arrangement of the 
reciprocal lattice points themselves, and includes the 
diffracted intensities associated with each r.l.p. In 
addition, in the absence of anomalous scattering, the 
diffracted intensities obey Friedel’s Law: 
 
   I(hkl)   =  I(-h,-k,-l) 
 
  Thus the reciprocal lattice has a centre of symmetry 
(which in general is not true for the real space lattice). 
 
  In the absence of crystal symmetry, a 180o rotation of 
the crystal is required to measure (nearly…see below) all 
the unique data. Because of Friedel’s law, this will result 
in a multiplicity of two. However, in the presence of 
symmetry, a data collection strategy can be employed 
which requires a smaller rotation to measure all the 
unique data. For example, if the crystal belongs to the 
Laue group 422, and is rotated around the four-fold axis 
during data collection, then only a 45o rotation is 
required (but it must be the correct 45o). A monclinic 
crystal requires a 180o rotation if rotated around the 
unique b axis, but only 90o if rotated around the a or c 
axes. 
 
The required rotation depends on both the crystal 
orientation and the Laue group. Programs are available to 
help design a suitable strategy. 



 
The “cusp” data 
 
Reciprocal lattice points lying very close to the rotation 
axis will never pass through the Ewald sphere. If the 
crystal is aligned with its symmetry axis exactly along 
the rotation axis, or if there is no symmetry (spacegroup 
P1), these data will not be recorded even if a full 360o 
rotation is used. To record these “cusp” data, the crystal 
must be rotated around a second axis (preferably 
orthogonal to the first). This is always necessary for 
triclinic data. For other symmetries, the missing data can 
be avoided by offsetting the symmetry axis from the 
rotation axis; in this case a reflection that lies in the cusp 
volume will have a symmetry mate that will pass through 
the Ewald sphere. The volume of the cusp region 
depends on the resolution and the wavelength. For 
wavelengths of 1Å or less, and 2.5Å resolution (or 
lower), the percentage of data that is lost is negligably 
small. 



Data Collection 
 
  Although in principle there are many ways in which the 
required volume of reciprocal space can be covered (eg 
precession photography), in practice this is always 
achieved by a simple rotation of the crystal about a single 
axis (the rotation or oscillation method).  
 
  In some experimental designs the crystal is placed on a 
multiple axis goniostat, allowing it to be oriented in a 
particular way (for example, with a symmetry axis 
parallel to the rotation axis). In the majority of cases, 
however, a single axis goniostat is all that is required. 
 
   As discussed earlier, the crystal orientation and crystal 
symmetry (Laue group) determine the total rotation 
range required. This range is covered by a series of 
sequential rotations. There are several factors which 
influence the choice of oscillation (rotation) angle for 
each image. A large oscillation angle minimises the 
number of images that need to be collected, and therefore 
the “dead time” while each image is read out and written 
to disk. However the angle must not be so large that 
spots on adjacent lunes overlap on the detector. A large 
oscillation angle also has the disadvantage that it 
increases the X-ray background on the image, which 
degrades the signal to noise, especially for the weak, 
high resolution data.  
 
  Coarse phi-slicing corresponds to the situation when the 
oscillation angle is comparable to or greater than the 
width (in phi) of a typical reflection. If the image width 



is a fraction of the reflection width, this is referred to as 
fine phi-slicing. 
 
 Data Processing 
 
Data processing falls naturally into three quite distinct 
steps: 
 
 i. Determination of crystal cell parameters, space 

group and orientation. 
 
 ii. Integration of the images (with concurrent 

refinement of crystal, beam and detector 
parameters). 

 
 iii. Data reduction, that is placing all data on a 

common scale, merging multiple observations to 
give a unique dataset while rejecting outliers and 
reducing intensities to amplitudes for use in heavy 
atom phasing, Fourier syntheses, model refinement 
etc. 

 
 
Autoindexing 
 
  Autoindexing uses the positions of spots on one of more 
images to determine the crystal lattice parameters and its 
orientation. The most successful algorithms are based on 
an FFT approach. 
 
  It is important to realise that it is NOT possible to 
determine the space group symmetry from the 
autoindexing alone, as it only makes use of spot 



positions. Spot intensities are required to detect the 
presence of symmetry.  
 
Definition of crystal orientation 
The crystal orientation can be defined as 
  X  =  ΦU B h 
where 
 X  is a vector in the laboratory frame giving the 

position of the reciprocal lattice vector with indices 
h 

B  is an orthogonalisation matrix, which  defines a set 
of orthogonal axes based on the crystal axes. This 
matrix depends only on the crystal cell parameters. 

Uis a pure rotation matrix describing the orientation of 
the crystal in the laboratory frame in the initial or 
standard setting.  

Φ is the rotation around the spindle axis for a single 
axis device, or more generally the goniostat matrix. 

 
For convenience, the product of the U and B matrices is 
often denoted as the "setting matrix" A 
   A  =  U B  
 
The orthogonalisation matrix B in the general case is 
given by  
 

    
a *  b *Cos α *      c * Cos β*
o     b * Sin α*   − c *Sin β * Cos α
o     o                      c * Sin β* Sin α

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟   



which as mentioned earlier depends only on the crystal 
cell parameters. 
 
  
Parameter refinement 
Once an orientation matrix and cell parameters have been 
derived from the auto-indexing, these parameters (and 
others) are refined further using a different algorithm.  
The parameters to be refined can be conveniently 
grouped into three classes: 
a)  Crystal parameters:  cell parameters, crystal 

orientation and mosaic spread (isotropic or 
anisotropic). 

b)  Detector parameters:  the detector position and 
orientation and (if appropriate) distortion 
parameters (e.g. the radial and tangential offsets for 
the Mar image plate scanner). 

c)  Beam parameters:  the orientation of the primary 
beam and beam divergence (isotropic or 
anisotropic). 

The refinement of these parameters is achieved by least-
squares minimisation of two residuals; a positional 
residual: 
 
  Ω1 =   +  ωix

i
∑ Xi

calc −  Xi
obs( )2 ω iy Yi

calc −  Yi
obs( )2     

 
where X and Y are the spot co-ordinates on the detector, 
and an angular residual: 



 
  Ω2 = ωi

i
∑ Ri

calc −  Ri
obs( )[ /di

*]2     

where Ricalc, Riobs are the calculated and observed 
distances of the reciprocal lattice point di* from the 
centre of the Ewald sphere (see figure 2).  Riobs is 
obtained from the phi centroid if fine phi slices have 
been used.  For coarse phi slices, the reciprocal lattice 
point is either assumed to lie exactly on the Ewald sphere 
at the midpoint of the rotation, or for partially recorded 
reflections its position is estimated from the degree of 
partiality of the reflection (i.e. the way in which the total 
intensity is distributed between the two abutting images).  
This latter approach, known as post-refinement because 
it requires a knowledge of the integrated intensities, 
requires a model for the rocking curve, and permits 
refinement of either crystal mosaicity or beam 
divergence. For fine phi slices the mosaic spread or beam 
divergence is estimated from the observed reflection 
width in phi. 
 
The refinement strategy can depend on how the data has 
been collected.  If fine phi slices have been used, 
accurate phi centroids and co-ordinates (X,Y) are 
available for most strong reflections (excluding those 
very close to the rotation axis) and both residuals (Ω1, 
Ω2) can be minimised simultaneously using a suitable 
selection of reflections (strong and evenly distributed 
over the detector and in phi).  Problems arising due to 



correlations of different parameters can be avoided either 
by fixing some parameters or by the use of eigen-value 
filtering.  These problems can be particularly serious for 
low resolution data, where there is a strong correlation 
between crystal to detector distance and the cell 
parameters, or for an offset detector where there is a high 
correlation between the detector swing angle and the 
(horizontal) primary beam co-ordinate.  If only a narrow 
phi range of reflections is used in the refinement then 
some unit cell parameters will be poorly defined and may 
be correlated with the crystal setting angles, and there 
will also be a strong correlation between the detector 
orientation around the X-ray beam and the crystal setting 
angle around the beam.  In such circumstances the 
refined parameters may assume physically unrealistic 
values, but this will not necessarily impair the accuracy 
of the prediction of reflection positions and widths. 
 
When the data is collected with coarse phi slices, only 
fully recorded reflections will give accurate spot 
positions (X,Y), and accurate phi centroids can only be 
determined for partially recorded reflections.  In some 
the two residuals are therefore minimised independently.  
Only the detector parameters are refined when 
minimising the positional residual, and only cell 
orientation and optionally beam parameters are refined 
against the angular residual.  This approach does have 
the advantage that the accuracy of the refined cell 
parameters does not depend on the accuracy of the 



crystal to detector distance or direct beam position, 
providing these are known sufficiently well to allow 
correct indexing of the reflections.   
 
 
Integration of the Images 
 
Predict the position in the digitised image of each Bragg 
reflection. 
Estimating its intensity (after subtracting the X-ray 
background) and an error estimate of the intensity.   
 
Predicting reflection positions 
 
Prediction of spot positions on a "virtual detector" 
Map onto the digitised image allowing for spatial 
distortions. 
 
Defining the peak/background mask 
 
The background can only be measured in a region around 
the spot either in two dimensions (X, Y, the detector co-
ordinates) for coarse phi-slices or in 3 dimensions (X, Y 
and phi) for fine phi slices.   
 
Require definition of a peak/background mask. 
 
Errors in the mask definition will give systematic errors 
in intensities. 



Summation integration and Profile Fitting
 
Summation integration: 
Sum the pixel values of all pixels in the peak area of the 
mask, and then subtract the sum of the background 
values calculated from the background plane for the 
same pixels.   
 
Profile fitting: 
Assume that the shape or profile (in 2 or 3 dimensions) 
of the spots is known.  
Determine the scale factor which, when applied to the 
known spot profile, gives the best fit to be observed spot 
profile.  This scale factor is then proportional to the 
profile fitted intensity for the reflection.   
 

R = W
ipeak

pixels

∑ (X
i
− KP

i
)2  

 
Xi  is the background subtracted intensity at pixel i 
Pi is the value of the standard profile at the 
corresponding pixel 
Wi is a weight, derived from the expected variance of 
Xi 
K is the scale factor to be determined 
 
Determining the "Standard" Profile 
 
These are determined for different areas on the detector. 
A weighted mean is used to evaluate any individual 
reflection. 
 



Precautions must be taken to avoid introducing 
systematic errors because of errors in the “standard” 
profiles. 
 
 
Standard Deviation Estimates 
 
For summation integration, a standard deviation can be 
obtained based on Poisson statistics. 
 
For profile fitted intensities the goodness of fit of the 
scaled standard profile to the true reflection profile can 
be used.   
 
These will generally underestimate the true errors, and 
should be modified accordingly. 
 



Scaling 
 
Apply polarisation and Lorentz factor corrections. 
 
 The intensities from different images then need to be put 
on a common scale. This allows for variations in source 
intensity (eg beam decay at a synchrotron), variations in 
diffracting volume, radiation damage and, to some 
extent, absorption corrections. 
 
Apply a scale factor K and temperature factor B to each 
image, and these parameters are refined to minimise the 
residual 
 
   R = W

hi
I

hi
− I

h
K

hi
( )

i
∑

h
∑ 2 

where: 
Ihi is the ith measurement of reflection h 
whi is the weight for that observation (the inverse of the 
variance) 

I
h

 is the weighted mean intensity for reflection h 

 
Khi   =   Kj exp (-2BjSin2�h/�2) 
 
Kj and Bj are the scale and temperature factors for image 
j on which Ihi was measured. 
�h  is the Bragg angle for reflection h 
�  is the radiation wavelength 
 



Success depends on the presence of multiple (symmetry 
related) observations on different images.  
 
Merging data 
 
Multiple observations are reduced to a weighted mean 
intensity and standard deviation.   
"Rogue" observations or outliers detected and rejected. 
 
Statistics on the agreement between multiple 
observations, data completeness, evidence for systematic 
errors such as partial bias (which arise from errors in 
modelling the reflection width) are also calculated at this 
stage. 



Modifying Standard Deviations. 
 
The level of agreement between multiple observations 
can be used to modify the standard deviations of the 
intensities.  Providing the multiplicity is high, then 
 
 

   
I
hi

− I
h

σ I
hi

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
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where: 
 Ihi, �(Ihi) are the intensity and standard deviation of the 
ith observation of reflection h 

I
h

 is the weighted mean intensity. 

should equal unity when averaged over a significant 
number of reflections.  
 
Standard deviations are modified to give 
 

�(Ihi) = A σ2 I
hi

⎛ 
⎝ 

⎞ 
⎠ + BI

hi
2  

 
where the values of the parameters A and B are chosen to 
get a standard deviation ratio of unity for all intensity 
ranges. 
 



Reducing Intensities to Amplitudes
 
The simplest way to determine the structure factor 
amplitudes (F) from the observed intensities (I) is simply 
 
 F = I  
 
However this cannot be applied to observations for 
which the observed intensity is negative (statistically, a 
certain percentage of the data will be expected to have 
negative intensities).  To overcome this problem, French 
and Wilson have applied Baysian statistics, making use 
of the prior knowledge that  the true intensity must be 
greater than zero,  and the distribution of intensities 
obeys Wilson statistics, to derive the most likely 
(positive) intensity for those reflections with an observed 
negative intensity. 
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