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Experiences with the molecular-replacement program Beast

have shown that maximum-likelihood rotation targets are

more sensitive to the correct orientation than traditional

targets. However, this comes at a high computational cost:

brute-force rotation searches can take hours or even days of

computation time on current desktop computers. Series

approximations to the full likelihood target have been

developed that can be computed by fast Fourier transforms

in minutes. These likelihood-enhanced targets are more

sensitive to the correct orientation than the Crowther fast

rotation function and they take advantage of information from

partial solutions. The likelihood-enhanced rotation targets

have been implemented in the program Phaser.
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1. Introduction

As the database of known macromolecular structures expands,

molecular replacement grows in importance as a method to

solve new crystal structures. Traditionally, molecular replace-

ment has been performed with Patterson-based methods but,

in common with many areas of macromolecular crystallo-

graphy, likelihood-based methods have been coming to the

fore. Bricogne (1992, 1997) ®rst suggested that likelihood

could be the basis for improved molecular-replacement algo-

rithms, also pointing out that series approximations of the

likelihood target could be computed rapidly by fast Fourier

transform (FFT) algorithms. We have built on these sugges-

tions, devising a new rotation likelihood function, providing a

statistical treatment for the use of multiple molecular-

replacement models and showing that likelihood indeed

provides a more sensitive target (Read, 2001). Here, we

describe fast approximations to the rotation likelihood func-

tion and their implementation in the new program Phaser.

Maximum likelihood asserts that the best model is that

which maximizes the probability of having made the set of

observations in the experiment. For diffraction experiments,

the observations are intensities, which can be transformed into

structure-factor amplitudes. In a molecular-replacement

search, the observed amplitudes can be predicted from the

structure factors computed from a model in a trial orientation

and/or position. For each re¯ection, the total model structure

factor is the sum of the structure-factor components, or

molecular transforms, from the symmetry-related copies of the

model in the unit cell. In a rotation search, the amplitude, but

not the phase, of the molecular transform contributed by each

symmetry-related model in the unit cell is known. Because the

relative phases are unknown, the molecular transforms cannot

simply be summed to calculate the total structure-factor

amplitude for comparison with the data.
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However, probability functions for the amplitudes of the

structure factors can still be derived. The form of the prob-

ability function varies with the assumptions made about the

nature of the molecular-transform components contributing to

the sum. If it is assumed that the central limit theorem applies,

i.e. that there are many symmetry-related molecules in the unit

cell, that they contribute independently to the sum and that

none of the individual molecular transforms dominates the

total structure factor, then the distribution can be approxi-

mated by a `random walk', given in the acentric case by a two-

dimensional Gaussian centred on the origin of the complex

plane. This has the same functional form as that described by

Wilson (1949) for the probability distribution of structure

factors arising from a random distribution of atoms.

In a rotation search, the translation vector is unknown and

can be considered to be a variable distributed randomly over

the unit cell. The relative phases of the molecular transforms

for symmetry-related molecules are determined by this vector,

so the relative phases are not really independent random

variables. Nonetheless, all possible relative phases between

pairs of molecular transforms are sampled as the translation

vector varies over the cell. Numerical simulations show that

for most space groups the distribution of amplitudes agrees

well with the distribution predicted for a random walk with

truly independent relative phases. The poorest approxima-

tions are seen for the polar space groups with fourfold and

sixfold axes. In spite of this, rotation functions based on the

assumption of a Wilson distribution still work well. In addi-

tion, in these space groups the translation search need only be

carried out over a plane, so it is computationally inexpensive

to test a large number of potential orientations with a subse-

quent translation search.

In the following, the expressions presented previously

(Read, 2001) are rearranged in order to make the approx-

imations that will be developed more intuitive. For computa-

tional convenience, we compute the log of the likelihood,

which has its maximum for the same values of the parameters

as the likelihood. If the re¯ections are assumed to be inde-

pendent, the total log-likelihood in the Wilson approximation

is given in terms of the observed structure factors Fo(h) by

ln
Q
h

pa�Fo;Fj;s�
� �

�P
h

ln
2Fo
"�W

exp ÿ F2
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"�W
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�1�
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where jf and jr refer to the ®xed (i.e. non-rotating) and rotating

molecules, respectively, and s labels the symmetry-related

molecules in the unit cell. �N is the bare variance of the

Wilson distribution, in which nothing is known apart from the

unit-cell content. �W is a perturbatively corrected variance

that takes into account the acquisition of extra information.

The factor " accounts for the statistical effect of symmetry on

the expected intensity. The D factors are, intuitively, the

fraction of the calculated structure-factor components that are

correlated to the true values. Each Fjf represents a structure-

factor component with unknown relative phase compared with

other components and may represent the sum of a number of

molecular transforms with known relative phase.

For instance, if the orientation but not the position of a ®xed

molecule is known, each symmetry-related copy of the ®xed

molecule will contribute a separate Fjf term. On the other

hand, if the position is also known, those contributions have

known relative phase and will be summed to give one

combined Fjf term.

If instead it is assumed that one component of the structure

factor dominates the distribution, the probability function for

the amplitude of the structure factor can be modelled as a

random walk around the end of the dominating structure-

factor component Fbig. For the acentric case, this gives a two-

dimensional Gaussian centred on the end of the dominating

structure factor. Integrating out the phase gives a probability

function similar to that described by Sim (1959), denoted the

Rice distribution in statistical literature,

ln
Q
h

pa�Fo;Fj;s�
� �

�P
h

ln
2Fo
"�S

exp ÿF2
o � F2

big

"�S

� �
I0

2FoFbig

"�S

� �� �
;

�6�
where

�S�h� � �N0 �h� ��rot�h� ÿ F2
big�h�: �7�

If the assumption that the central limit theorem holds is also

relaxed, then the distribution can be described in terms of a

Fourier±Bessel series, analogous to distributions obtained by

Shmueli & Weiss (1995). The Rice distribution has been

implemented in the program Beast and the Wilson and Rice

target functions implemented in the program Phaser. The

Fourier±Bessel series target function has not been imple-

mented in the context of molecular replacement.

Brute-force searches using maximum-likelihood rotation

functions are computationally intensive. They share this

problem with the Rossmann & Blow (1962) rotation function,

where several techniques have been used to reduce compu-

tation time. For instance, Tollin & Rossmann (1966) used the

observation that the rotation-function values are dominated

by strong re¯ections to approximate the function by only using

these terms (`large terms') in the calculation. However, the

most effective and most widely used method for reducing

computation time is the fast rotation function developed by

Crowther (1972), in which the Patterson is decomposed into

orthogonal spherical harmonics and Bessel functions and the

rotation function is calculated in Eulerian � sections with a

fast Fourier transform (FFT). Here, we show how the Wilson

likelihood target can be expanded as a Taylor series and the
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initial terms in this series used for a similar fast Fourier

transform calculation. This speeds up the calculations by

several orders of magnitude, with minimal loss of sensitivity. If

maximal sensitivity is required, the fast rotation functions can

be used to generate a list of plausible orientations, which are

then rescored with the full likelihood target. A similar time-

saving strategy is used in AMoRe (Navaza, 1994). Although

we have implemented our fast rotation function as a series of

two-dimensional FFTs, following Crowther (1972), it could

also have been implemented as a single three-dimensional

FFT, as performed by Kovacs & Wriggers (2002).

2. Series expansion of Wilson likelihood function

The Rice likelihood function is slightly better for brute-force

rotation searches than the Wilson likelihood function, but it

requires one to pick out the largest contribution to each

structure factor for each orientation. The Wilson likelihood

function does not have this restriction and all contributions to

the structure factor are treated equally, so it provides a more

suitable starting point for the derivation of a fast rotation

function. In practice, there is little difference in sensitivity

between brute-force rotation searches carried out with the

Wilson and Rice likelihood functions.

Starting from (1), we obtain for an acentric re¯ection

ln pa�Fo;Fj;s�
� � � ln

2Fo
"�W

� �
ÿ F2

o

"�W

� ln
2Fo
"�N0

� �
ÿ ln�1 � �� ÿ F2

o

"�N0
�1 � ��ÿ1; �8�

where we have de®ned the quantity

� � �rot

�N0
�9�

so that

�W � �N0 ��rot � �N0 �1 � ��: �10�
� is a perturbation term that will be distributed about zero, so

that an approximation with a Taylor series is most accurate in

the region that will be sampled in the search. The quantity � is

assumed to be small so we can Taylor expand ln(1 + �) and

(1 + �)ÿ1. Both Taylor series have a radius of convergence of 1,

i.e. they converge when �rot < �N0. We do not expect this

series to converge for all orders in �, but numerical simulations

show that the ®rst few terms are a good approximation to the

full likelihood. If we collect terms in powers of � we arrive at

ln�pa� � Ca �
P1
n�1

�ÿ1�nÿ1 F2
o

"�N0
ÿ 1

n

� �
�n; �11�

where

Ca � ln
2Fo
"�N0

� �
ÿ F2

o

"�N0
�12�

is independent of the rotation angle and thus only contributes

an overall irrelevant term.

Similarly, for a centric re¯ection we obtain the expansion

ln�pc� � Cc �
1

2

P1
n�1

�ÿ1�nÿ1 F2
o

"�N0
ÿ 1

n

� �
�n; �13�
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2
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2�F2
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"�N0

� �
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3. Likelihood-enhanced fast rotation functions

Ignoring the overall constants, the likelihood function

becomes

ln
Q
h

p�Fo;Fj;s�
� �

/P
h

wh

P1
n�1

�ÿ1�nÿ1 F2
o

"�N0
ÿ 1

n

� �
�n; �15�

where wh = 1 for acentric and wh = 0.5 for centric re¯ections.

This function could be used for a direct rotation function, in

which the model contributions are computed as a function of

orientation for each re¯ection, in terms of the unit cell for the

observed data. By Parseval's theorem, such a direct rotation

function would correspond to the integral of the product of

the Fourier transforms of the observed and calculated terms.

The ®rst-order terms are intensities, so the ®rst-order term

would correspond to a Patterson overlap function. However,

for the fast rotation function the model terms cannot be

recomputed for every orientation. Pursuing the analogy with

Patterson overlap functions, we can consider only the volume

within a sphere of the origin of the real-space (Patterson or

higher order `Patterson of a Patterson') function. Expanding

to P1 and transforming that overlap integral back into reci-

procal space, we obtain the form

P
h

P
k

P1
n�1

�ÿ1�nÿ1 Fo�h�2
"�N0

ÿ 1

n

� �
�rot�k�
�N0

� �n
�
�hÿ kRÿ1�; �16�

where �
(p) = (1/V
)
R

 d

3x exp�2�ip � x� is the Fourier

transform of the sphere, �rot is computed for the model in its

initial orientation and R is the rotation matrix describing the

rotation of the model. The factor wh disappears because, in the

expansion to P1, centric re¯ections contribute only half as

many unique terms as acentric re¯ections. (16) is of the formP
h

P
k

It�h�Is�k��
�hÿ kRÿ1�� �
; �17�

which, ignoring scalings, is similar to equation (15) in Navaza

(2001). We can thus identify It(h) and Is(k) with the terms in

our series expansion and use the methods outlined in Navaza

(2001) to compute a fast rotation function. The ®rst term in

this series becomes

It1�h� �
1

�N0

F2
o�h�
"�N0

ÿ 1

� �
; �18�

Is1�k� � �rot�k� �
P
s

D2F2
jr;s
�k� ÿ hD2F2

jr;s
i� �
: �19�

In fact, each symmetry-related component of Is1 contributes

equally to the products with symmetry-related It1 terms, so it is

suf®cient to include only one symmetry-related contribution

to Is1,
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Is1�k� � D2F2
jr
�k� ÿ hD2F2

jr
i: �20�

This is a scaled and variance-weighted version of the Patterson

overlap function used in the Crowther target. We call this

approximation LERF1 (likelihood-enhanced rotation func-

tion of order 1). The second term in the approximation series

is

It2�h� � ÿ 1

�2
N0

F2
o�h�
"�N0

ÿ 1

2

� �
; �21�

Is2�k� � D2F2
jr
�k� ÿ hD2F2

jr
i� �2

: �22�

The physical interpretation of this term is more dif®cult as it

involves the square of the intensities for the rotated model.

This can be thought of as the `Patterson of a Patterson'. We

refer to the second-order approximation that includes this

term as LERF2.

It is also worth noting that this term does not include any

cross-terms involving symmetry-related models with different

symmetry operations. The term presented here is the best that

can be performed in a `fast' approximation.

In the case where there is no ®xed model, LERF1 reduces

to the fast rotation function proposed by Bricogne (1997),

which does not have a means to exploit prior structural

information. Such a rotation-function target is equivalent to

one we proposed based on more heuristic arguments (Read,

1990a,b). In the absence of a ®xed model, �N0 = �N, which is

no longer a function of h but just a radially symmetric function

so that one factor of �ÿ1
N can be taken into the model

Patterson coef®cients. The coef®cients for the observed

Patterson map become (E2
0 ÿ 1), corresponding to a shar-

pened origin-removed Patterson. The effect of the D values in

the model Patterson coef®cients is to make this the Patterson

corresponding to the expected electron density, i.e. the

Patterson corresponding to a model in which the atoms have

been smeared over their possible positions (Read, 1990a). The

normalization factor �N converts the D-weighted amplitudes

into �A-weighted E values, giving the coef®cients �2
A�E2

C ÿ 1�.
It is interesting to consider how the information from a

®xed model is introduced into the coef®cients of LERF1. The

structure-factor contributions from a ®xed model comprise

part of �N0, which appears in both the numerator and the

denominator of the observed Patterson coef®cient. The effect

of the �N0 term in the numerator is to subtract from the

observed Patterson coef®cient the contributions to the

Patterson of the ®xed molecules. The effect of the �N0 term in

the denominator is to downweight structure factors for which

there is a large relative contribution from the ®xed model

components, re¯ecting the fact that much of the observed

intensity has already been accounted for.

It has been proposed previously that the component of the

observed Patterson explained by the partial model could be

removed by using the coef®cients |Fo|
2 ÿ |Fc|

2 (Nordman, 1994;

Zhang & Matthews, 1994). This accounts for part of the effect

of �N0. Alternatively, Dauter et al. (1991) replaced the

observed Patterson coef®cients |Fo|
2 by (|Fo| ÿ |Fc|)

2 in

searching for the eglin-C component of a complex with

subtilisin, after ®nding and re®ning the subtilisin component.

4. Implementation

The target functions described in the previous section were

implemented in the program Phaser. For ef®ciency, the

calculations were performed in terms of normalized structure

factors (E values). In order to reduce the errors in the

calculation of spherical harmonics the method of Navaza

(2001) was used. The elmn values were given by

et;slmn
�i� � s�n�P

h

It;si �h�Ym
l �ĥ�

jl�2nÿ1�2�hb�
2�hb

; �23�

where s(n) = {12�[2(l + 2n) ÿ 1]}1/2. The (i) refers to either the

®rst- or second-order approximation. The radial integral (in

hkl space) is then given by the sum over n,

Cl
m;m0

�i� � PN
n�1

etlmn
�i�eslm0n

�i�: �24�

The search target LERF1 only uses the ®rst term in the

expansion

RLERF1 � FT
PL
l�2

Cl
m;m0 �1�dlm;m0 ���

� �
; �25�

where FT is the Fourier transform of the indices m and m0 and

dlm;m0 are the irreducible rotation group matrices about the y

axis.

Similarly, the LERF2 target is given by

RLERF2 � FT
PL
l�2

Cl
m;m0 �1� � Cl

m;m0 �2�
� �

dlm;m0 ���
� �

: �26�

For test purposes, we have also implemented the Crowther

target. As in the AMoRe implementation, the low-order

spherical harmonics can be omitted. By default, all terms with

l � 2 are used.

Phaser reports the fast rotation function score as a fraction

of the maximum value and optionally rescores the top solu-

tions with a log-likelihood gain (LLG) score. The LLG score is

the difference between the log-likelihood score for the

molecular-replacement trial and the log-likelihood from the

Wilson distribution. It thus measures how much better the

data can be predicted from the model than from a set of

random atoms.

5. Test cases

5.1. b-Lactamase and b-lactamase inhibitor protein complex

The structure of the complex between �-lactamase (BETA)

and �-lactamase inhibitor protein (BLIP) was solved (Stry-

nadka et al., 1996) using the program AMoRe (Navaza, 1994).

Although the BETA (62% of content of asymmetric unit)

component was easily the top peak in the rotation function,

the BLIP component (38% of asymmetric unit) did not

produce a clear signal. It was only by scoring a large number of
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rotation peaks with the translation function that the correct

solution was found in the original structure determination.

We used anisotropically corrected data for our tests

(McCoy, Storoni & Read, work to be published). Even though

the LERF1 and LERF2 targets are able to ®nd the correct

orientations without the anisotropic corrections, the rescoring

with the full likelihood target does not give the best score for

the correct peak. This is because the full likelihood target is

more sensitive to the effects of anisotropy than are its low-

order approximations.

We tested LERF1 and LERF2 by comparing the relative

score of the correct peak and the highest incorrect peak. The

incorrect scores represent orientations that are not clustered

to the correct peak. As the results in Table 1 show, the fast

rotation function in Phaser using either LERF1 or LERF2

targets is able to distinguish the correct solution.

We also tested the approximations by rescoring the peaks

produced by the Crowther target and LERF1 with the full

likelihood target. Figs. 1 and 2 show the correlation between

the fast rotation targets and the full likelihood targets. In Fig. 1

the Crowther target was used and the correlation coef®cient

was 0.788. Fig. 2 shows the same results with LERF1, where we

obtained the signi®cantly higher correlation coef®cient of

0.927. The results for LERF2 (Fig. 3) were comparable to

those for LERF1 and the correlation coef®cient was also

0.927. The ®gures only show the rescoring of clustered peaks.

A similar test involving the rescoring of all rotation function

values gave very similar results, with correlation coef®cients of

0.815 and 0.938 for the Crowther target and LERF1, respec-

tively.

Phaser also allows the information from the known partial

model of BETA to be used to increase the signal to noise.

When the known orientation of BETA is added to the search,

the correct solution has an even more obvious peak in the

function, as can be seen in Table 1. When both the orientation

and the position of BETA are ®xed, the solution becomes even

clearer.

Table 1
Rotation-function results for the BLIP component.

Results are expressed as Z scores, i.e. r.m.s. deviations above the mean score.

Prior information
No prior
information

Fix orientation
of BETA

Fix position
of BETA

Crowther score
Correct 3.89 Ð Ð
Top incorrect 4.50 Ð Ð

LERF1 score
Correct 4.23 4.54 5.21
Top incorrect 3.77 3.69 3.87

LERF2 score
Correct 4.26 4.53 5.00
Top incorrect 3.98 3.95 4.06

LLG score
Correct 4.50 4.92 6.08
Top incorrect 3.94 3.62 3.96

Figure 1
Scatter plot showing correlation between Crowther target and LLG for
the BLIP component.

Figure 2
Scatter plot showing correlation between LERF1 and LLG for the BLIP
component.

Figure 3
Scatter plot showing correlation between LERF2 and LLG for the BLIP
component.
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The knowledge of the placement of the BETA component is

a very powerful piece of information. With the additional

information, we were able to solve the BETA and BLIP

complex by using only data to 6 AÊ resolution. Without the

known solution for BETA, there is no signal in the BLIP

search at this resolution.

5.2. Molybdopterin synthase MoaE subunit deletion mutant

Escherichia coli molybdopterin synthase is a tetramer

comprising two copies each of subunits MoaD and MoaE. A

deletion mutant of MoaE forms a stable homodimer that can

be crystallized. When its structure was determined, two of

three dimers in the asymmetric unit could be located by

molecular replacement, but not the third (Rudolph et al.,

2003). In retrospect, the third dimer is probably more dif®cult

to locate because it has signi®cantly higher overall B factors

(55 compared with 42 AÊ 2 for the other two dimers). When the

structure was solved, the third dimer was found rather

inventively using ARP/wARP (Perrakis et al., 1999) to build

into unexplained density based on phases from the ®rst two

dimers and then superimposing the molecular-replacement

model on the partial model. We investigated this structure to

see whether Phaser would have been capable of ®nding the

third dimer more easily, taking advantage of the ability of

LERF1 and LERF2 to exploit the information from a partial

solution.

In the published molecular-replacement searches, only

data from a restricted resolution shell (8±4 AÊ ) were used,

presumably to reduce CPU requirements. Because LERF1

and LERF2 can be computed much more ef®ciently than the

brute-force likelihood functions in Beast, we used data to 3 AÊ

resolution in these tests. As in the published structure deter-

mination, the molecular-replacement model was a MoaE

dimer constructed from the structure of molybdopterin

synthase (Rudolph et al., 2000), entry 1fm0 in the Protein Data

Bank (Berman et al., 2000). As reported in the original

structure determination, the solution for the ®rst two dimers is

extremely clear, with Z scores above 8 for the rotation search.

In fact, when data to 3 AÊ resolution are used, there is also a

clear signal for the third dimer, although it is considerably

weaker (Table 2). Using only the restricted 8±4 AÊ resolution

shell, the orientation for the third dimer is lost in the noise

(results not shown). As the results in Table 2 demonstrate, the

addition of prior information about the ®rst two dimers

dramatically increases the signal in both the LERF1 fast

rotation function and in the full rotation likelihood function.

Even with the restricted resolution shell, the correct orienta-

tion for the third dimer is unambiguous when information

about the ®rst two is added (results not shown). Using the new

methods in Phaser, this structure solution would have been

straightforward.

It is interesting to note that the LLG score performs less

well than LERF1 in this case when information about ®xed

molecules is provided. In the current implementation of the

likelihood function and its approximations, it is assumed that

all molecules have similar overall B factors and thus that they

contribute in proportion to their molecular weight at all

resolutions. In this case, it is assumed that in ®xing the ®rst two

dimers two-thirds of the scattering has been accounted for, but

at high resolution the proportion will be signi®cantly higher.

The LLG score is more sensitive than its low-order approx-

imations LERF1 and LERF2 to errors in the estimate of the

proportion of scattering that has been accounted for, because

it is more sensitive to larger deviations from expected values.

In future work, we will explore the possibility of re®ning the

relative B factors of partial solutions and the missing

components.

6. Conclusions

The likelihood-enhanced fast rotation functions are an effec-

tive approximation to the full likelihood target, with the

advantage of being several orders of magnitude faster. Where

the fast rotation function fails to ®nd the correct orientation,

the correct solution is higher in the list than with the Crowther

function. Therefore, this list is a better starting point for

subsequent translation searches or for rescoring with the full

likelihood than the Crowther method. The lack of improve-

ment of LERF2 over LERF1, the increased computation time

arising from the extra calculations and the possible lack of

convergence of the expansion series suggest that there is no

real advantage in using even higher order terms in the series,

i.e. implementing LERFn. In fact, a variety of tests (not

shown) demonstrate that LERF2 is not systematically better

or worse than LERF1.

The likelihood target for the translation function is equally

as computationally intensive as the rotation function and also

takes hours to days to compute on current desktop computers.

It is possible to formulate a likelihood-enhanced fast transla-

tion function that can also be calculated with the fast Fourier

transform. We expect that combining the likelihood-enhanced

fast rotation function with a likelihood-enhanced fast trans-

lation function will provide a powerful and fast method for

molecular-replacement structure solution in macromolecular

crystallography. The program Phaser will be released as part

of the CCP4 and PHENIX software suites and is also available

from the authors (see http://www-structmed.cimr.cam.ac.uk/

phaser for details).
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Table 2
Rotation-function results for the third dimer of the MoaE subunit of
molybdopterin synthase.

Results are expressed as Z scores, i.e. r.m.s. deviations above the mean score.

Prior information
No prior
information

Fix orientations of
dimers 1 and 2

Fix positions of
dimers 1 and 2

Crowther score
Correct 5.72 Ð Ð
Top incorrect 4.76 Ð Ð

LERF1 score
Correct 5.52 8.36 9.69
Top incorrect 4.34 4.21 4.28

LLG score
Correct 5.62 7.44 6.52
Top incorrect 4.57 3.92 3.31
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